Generalization Bounds for Ranking Algorithms via Algorithmic Stability

نویسندگان

  • Shivani Agarwal
  • Partha Niyogi
چکیده

The problem of ranking, in which the goal is to learn a real-valued ranking function that induces a ranking or ordering over an instance space, has recently gained much attention in machine learning. We study generalization properties of ranking algorithms using the notion of algorithmic stability; in particular, we derive generalization bounds for ranking algorithms that have good stability properties. We show that kernel-based ranking algorithms that perform regularization in a reproducing kernel Hilbert space have such stability properties, and therefore our bounds can be applied to these algorithms; this is in contrast with generalization bounds based on uniform convergence, which in many cases cannot be applied to these algorithms. Our results generalize earlier results that were derived in the special setting of bipartite ranking (Agarwal and Niyogi, 2005) to a more general setting of the ranking problem that arises frequently in applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Generalization of Bipartite Ranking Algorithms

The problem of ranking, in which the goal is to learn a real-valued ranking function that induces a ranking or ordering over an instance space, has recently gained attention in machine learning. We study generalization properties of ranking algorithms, in a particular setting of the ranking problem known as the bipartite ranking problem, using the notion of algorithmic stability. In particular,...

متن کامل

The University of Chicago Algorithmic Stability and Ensemble-based Learning a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Computer Science by Samuel Kutin

We explore two themes in formal learning theory. We begin with a detailed, general study of the relationship between the generalization error and stability of learning algorithms. We then examine ensemble-based learning from the points of view of stability, decorrelation, and threshold complexity. A central problem of learning theory is bounding generalization error. Most such bounds have been ...

متن کامل

Simple Risk Bounds for Position-Sensitive Max-Margin Ranking Algorithms

R bounds for position-sensitive max-margin ranking algorithms can be derived straightforwardly from a structural result for Rademacher averages presented by [1]. We apply this result to pairwise and listwise hinge loss that are position-sensitive by virtue of rescaling the margin by a pairwise or listwise position-sensitive prediction loss. Similar bounds have recently been presented for probab...

متن کامل

Algorithmic Stability and Learning on Manifolds

The talk consists of two parts: in the first part, we review the notion of algorithmic stability to obtain bounds on generalization error using training error estimates. We introduce the new notion of training stability that is sufficient for tight concentration bounds in general and is both necessary and sufficient for PAC learning. In the second part, we consider several algorithms for which ...

متن کامل

Stability Bounds for Stationary φ-mixing and β-mixing Processes

Most generalization bounds in learning theory are based on some measure of the complexity of the hypothesis class used, independently of any algorithm. In contrast, the notion of algorithmic stability can be used to derive tight generalization bounds that are tailored to specific learning algorithms by exploiting their particular properties. However, as in much of learning theory, existing stab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2009